

Rotary Positive Blowers & Exhausters

RAM

B-05X93 April 2002

ABOUT ROOTS

Dresser ROOTS, Dresser, Inc. is the longest

continuously run manufacturer of rotary positive displacement blowers in the United States. In 1854, Francis and Philander Roots, woolen mill owners in Connersville, IN, stumbled upon the principles that drive the rotary positive displacement concept.

Francis and Philander's, attempts to improve efficiency in their mill's power system failed as the wooden lobed water wheel warped and jammed when

put to use. In the course of investigating the problem on dry land, one of the brothers turned a shaft and rotated the pair of impellers. The impellers produced a large wind force blowing off his brother's hat. At that point, the brothers decided that they had a better blower than water wheel. Thus, the ROOTS blower concept and the ROOTS Blower Company was created in their hometown of Connersville, Indiana, USA.

The rotary positive blower, invented around the same time as the telegraph, and steam engine, has withstood the test of time as the other inventions have fallen along the wayside. During the early years, the units proved reliable as low-pressure air sources for anything from blacksmith forges, to mine ventilation, to the first New York City subway. In 1893, an engineer broke from the ROOTS Blower Company and started the Connersville Blower Company. These two

competitors continued in Connersville until 1931. At that time, the International Derrick and Equipment Company (IDECO) purchased both firms and created

the ROOTS-Connersville Blower Company.

During 1931, ROOTS began to produce centrifugal compressors. Today, ROOTS manufactures integral-geared, and pedestal

> mounted, overhung, single-stage centrifugal compressors as well as horizontally split multi-stage centrifugal compressors.

During WWII ROOTS supplied, Navy submarines and large surface craft with a special screw compressor used for ballast blowing.

In 1944, Dresser Industries, Inc. acquired ROOTS to expand its range of

services for the gas and oil industries. During 1998, Dresser Industries merged with the Halliburton company. In 1999 the ROOTS and DMD Division of Dresser Equipment Group, Inc combined and in 2000 joined with the Instrument Division to form Dresser Measurement. During 2001, Dresser Equipment Group separated from Halliburton through a management buy-out to form Dresser, Inc.

Accessories

Available accessories for ROOTS blowers, gas blowers and exhausters include driver, relief valves, inlet and discharge silencers, inlet filters, check valves, extended base, V-belt drive or flexible coupling and drive guards.

Contact your Authorized ROOTS Distributor or Factory Sales Representative for details concerning your specific application or installation.

Warranty

The Dresser ROOTS warranty covers URAI & URAI-J 2 ¹/₂ to 7 inch gear diameter and RAM & RAM-J 4 ¹/₂ to 6 inch gear diameter units for a full 24 months from original start up date or 30 months from shipment, whichever occurs first. Full details are supplied in Warranty Policy WP-5020.

OPERATING PRINCIPLES:

ROOTS™ rotary positive displacement principle

The basic unit consists of two figure eight shaped impellers mounted on parallel shafts. The impellers rotate in opposite directions within a cylindrical casing. As each impeller passes the inlet, it traps a definite volume of air/gas and carries it around the casing to the discharge where the gas is expelled. The cycle repeats four times with every revolution.

All ROOTS[™] rotary positive blowers have close tolerances between the impellers and casing to minimize back-slippage of gas and to improve efficiency.

ROOTS WHISPAIR principle Lower Air Pulsation

Exclusive ROOTS[™] WHISPAIR[™] blowers operate using up to 50% less pressure pulsation than conventional blowers due to the pressure equalizing effect of the WHISPAIR jet design.

Lower Vibration, Lower Noise

Pressure pulses, inherent in rotary-lobe design, are the major source of blower noise. The rapid backflow of air into the blower casing from pressurized air/gases in the discharge line, four times per revolution in a bi-lobe rotary blower, result in high noise levels. By pre-pressurizing the low pressure pocket as it is moved through the blower casing, the WHISPAIR cavity reduces the magnitude of discharge pulsations versus conventional blowers. The WHISPAIR design controls the backflow air into the blower, reducing noise by approximately 5 dB vacuum, 3 dB pressure.

Longer Bearing Life

These smoothed pulsations cause less shock being transmitted through the impellers to the bearings, resulting in approximately 20% longer bearing life.

Contents

Accessories.....2 Warranty.....2 **OPERATING PRINCIPLES:.....3** Universal RAI[®] series4 U-RAI Performance Tables......5 ROOTS XLP WHISPAIR7 XLP series Performance Table.....7 RAM[™] series.....8 RAM Performance Tables......9 RCS series.....10 RCS series Performance Table......11 WHISPAIR DRY EXHAUSTERS......12 RAM WHISPAIR DRY HIGH PRESSURE BLOWERS......13 DVJ & DPJ Performance Table......13 Configurations.....14 Dimensional Drawings & Tables.....14 Typical Application Packages......18 Other ROOTS products......20 Authorized ROOTS Distributor......20

Universal RAI® series

rotary positive blowers/vacuum exhausters Basic Equipment Description

All Universal RAI (U-RAI) series blowers are heavy duty rotary blowers in a compact, sturdy design engineered for continuous and maximum reliability. These blowers have grease lube on the drive-end with splash oil lube on gear end. ROOTS exclusive "figure 8" gearbox design improves oil distribution and lengthens bearing and gear life.

This series features a grey iron casing, carburized and ground alloy steel spur timing gears secured to steel shafts with a taper fit and locknut, and grey iron involute impellers. Oversized anti-friction bearings are used, with a heavy duty cylindrical roller bearing at the drive shaft to withstand V-belt pull.

Standard Universal RAI air units

Frames 22 thru 718

The standard U-RAI[®] blower features universal detachable rugged steel mounting feet to permit easy in-field adaptation to either vertical or horizontal installation requirements and any of four drive shaft positions— top, bottom, right or left hand. All frame sizes are center-timed to allow for rotation in either direction.

Universal RAI-J WHISPAIR[™] air units

Frames 33J thru 56J

ROOTS refined the standard U-RAI line using computer aided design techniques to incorporate the ROOTS exclusive WHISPAIR[™] jet. The WHISPAIR jet uses shock suppression techniques for noise and pulsation reduction. This exclusive WHISPAIR feature can reduce noise 3-5 dB on typical installations. Like the standard U-RAI blower, the U-RAI-J features universal detachable rugged steel mounting feet to permit easy in-field adaptation.

Universal RAI gas units

Frames 32GJ thru 615GJ

4

U-RAI gas blowers feature mechanical seals and Viton o-rings. The seal system is designed to meet or exceed gas industry safety standards, including provisions for purge gas in the headplates. The U-RAI gas blower uses detachable rugged steel mounting feet for easy in-field adaptation of drive shaft position. Conversion to meet vertical or horizontal installation requirements is achieved by exchanging the orientation configured mounting feet.

U-RAI Performance Tables

Frame	Speed	1	PSI	2	PSI	3	PSI	4 P	PSI	5 1	PSI	6	PSI	7	PSI	10	PSI	11	PSI	12	PSI	13	PSI	14	PSI	15	PSI	MA	X. VAC	UUM
Size	RPM	CFM	BHP	CFM	BHP	CFM	BHP	CFM	BHP	CFM	BHP	CFM	BHP	CFM	BHP	CFM	BHP	CFM	BHP	CFM	BHP	CFM	BHP	CFM	BHP	CFM	BHP	*Hq	CFM	BHP
	1160	10	0.2	7	0.3	4	0.3	2	0.4																			4	6	0.3
22	3600	49	0.6	46	0.8	43	1.1	41	1.3	39	1.6	38	1.8	36	2.1	32	2.8	31	3.1	29	3.3							14	28	2.0
	5275	76	0.8	73	1.2	70	1.6	68	1.9	66	2.3	64	2.7	63	3.1	59	4.2	57	4.5	56	4.9							15	53	3.1
	1160	24	0.3	19	0.4	15	0.6	11	0.8	8	0.9																	6	12	0.6
24	3600	102	0.8	97	1.3	93	1.8	89	2.3	86	2.8	83	3.3	81	3.8													14	69	3.8
	5275	156	1.2	150	1.9	146	2.7	143	3.4	140	4.2	137	4.9	135	5.6													15	119	5.8
	1160	40	0.4	34	0.6	30	0.9	27	1.1	24	1.3	21	1.6	19	1.8													10	18	1.3
32	2800	113	1.0	108	1.6	104	2.1	101	2.7	98	3.2	95	3.8	93	4.3	86	6.0	84	6.5	82	7.1	81	7.6	79	8.2	77	8.7	15	78	4.5
	3600	149	1.3	144	2.0	140	2.7	137	3.4	134	4.1	131	4.8	129	5.5	122	7.7	120	8.4	118	9.1	117	9.8	115	10.5	113	11.2	16	110	5.9
	1160	55	0.5	48	0.8	43	1.1	39	1.4	35	1.7	31	2.1	28	2.4													10	27	1.7
33	2800	156	1.2	149	2.0	144	2.7	140	3.5	136	4.2	132	5.0	129	5.7	120	8.0	118	8.7	116	9.5							14	113	5.6
	3600	205	1.6	199	2.5	193	3.5	189	4.5	185	5.4	181	6.4	178	7.4	170	10.3	167	11.2	165	12.2							15	159	7.6
	1160	95	0.7	85	1.2	78	1.7	72	2.3	66	2.8	61	3.3	57	3.8													10	55	2.7
36	2800	262	2.0	253	3.3	245	4.5	239	5.8	234	7.0	229	8.3	224	9.5													12	213	7.9
	3600	344	2.9	334	4.5	327	6.1	321	7.7	315	9.3	310	10.9	306	12.5													15	278	12.7
	860	38	0.4	32	0.6	28	0.9	24	1.1	21	1.3	18	1.5	15	1.8													8	19	1.1
42	1760	92	0.8	87	1.3	82	1.8	78	2.2	75	2.7	72	3.1	69	3.6	62	5.0	60	5.5	58	5.9							14	56	3.5
	3600	204	1.7	198	2.6	194	3.6	190	4.5	186	5.5	183	6.4	181	7.4	173	10.2	171	11.2	169	12.1	167	13.1	165	14.1	163	15.0	15	160	8.0
	860	/9	0.6	68	1.1	60	1.5	53	2.0	48	2.4	42	2.9	37	3.4													8	46	1.9
45	1/60	188	1.3		2.2	169	3.1	162	4.1	156	5.0	151	5.9	146	6.9	133	9.6											12	134	5.8
	3600	410	3.4	400	5.3	392	7.2	385	9.1	3/9	11.0	3/4	12.9	369	14.8	356	20.5											15	332	15.9
47	860	105	0.8	92	1.4	82	2.0	/3	2.6	66	3.2	59	3.8	53	4.4													8	63	2.5
4/	1/60	249	1.6	236	2.8	225	4.0	21/	5.3	209	6.5	203	1./	196	8.9													12	181	1.5
	3600	542	4.5	529	7.0	519	9.5	510	12.0	503	14.3	496	17.0	490	19.5													15	452	19.8
50	/00	/2	0.6	63	1.0	50	1.4	51	1.8	40	2.2	42	2.6	38	3.0	107	10.0	100	44.0	100	10.0	457	110	455	15.0			10	36	22
53	1/60	211	1.7	203	2.7	190	3./ 6.6	191	4./	180	5.7	101	0./	1//	10.0	107	10.8	163	10.7	160	12.8	157	14.2	155	15.2	205	00.0	14	158	14.0
	2000	100	0.0	340	0.0	340	0.0	00	0.2	329 05	9.9	323 70	11.0	321 70	10.2	310	10.1	307	19.7	304	21.3	301	23.0	290	24.0	290	20.2	10	391	14.0
56	1760	120	0.9	245	1.0	225	2.2	32	2.9 7.7	210	3.0 0.4	/0 010	4.0	206	4.9	200	17.0	205	10.6	200	076	22.0						10	70 076	3.0
00	2850	508	2.0	595	4.0 8.0	575	0.0 10.7	520 567	13.5	560	9.4 16.2	552	10.0	500	12.0 01.7	290	30.0	526	327	200 521	270 517	20.0						14	270 501	12.0
	2000	187	1.2	170	2.0	158	3.2	1/7	10.0	138	5.1	130	61	J 4 7	21.7	301	30.0	520	52.7	521	517	00.2						8	135	11
50	1760	520	30	513	61	500	80	147	4.2 11 /	180	13.1	170	16.3	161	18.8													12	100	15.6
55	2850	881	7.8	865	11.8	852	15.8	842	19.9	832	23.9	824	27.9	816	31.9													15	770	32.1
	700	140	1.0	126	1.8	116	2.6	107	33	100	41	93	4.8	86	55	70	7.8											12	71	47
65	1760	400	3.4	387	5.3	377	72	368	91	360	11 0	353	12.8	347	14 7	330	20.4	325	22.3	320	24.2	316	26.1	311	27.9	307	29.8	16	300	15.8
	2350	546	5.2	523	7.7	522	10.3	513	12.8	506	15.3	499	17.8	492	20.3	475	27.4	470	30.4	466	32.9	461	35.5	457	38.0	452	40.5	16	445	21.6
	700	224	1.5	203	2.7	187	3.9	172	5.1	160	6.3	149	7.5	139	8.7						0							10	135	6.2
68	1760	643	4.9	621	7.9	605	10.9	591	14.0	579	17.0	567	20.0	557	23.1	530	32.2	522	35.2	515	38.2	507	41.3	500	44.3			15	495	23.5
	2350	876	7.3	855	11.4	838	15.4	824	19.5	812	23.5	801	27.6	790	31.6	763	43.8	755	47.8	748	51.9	740	55.9	733	60.0			16	715	34.0
	700	420	2.6	380	4.8	351	7.1	323	9.3	301	11.6	279	13.8	260	16.2													8	292	9.1
615	1760	1205	8.1	1164	13.9	1133	19.5	1107	25.2	1084	30.8	1063	36.5	1044	42.2													12	997	35.0
	2350	1641	11.9	1601	19.3	1570	27.0	1544	34.6	1521	43.2	1500	49.8	1481	57.4													14	1389	54.9
	575	195	1.3	179	2.3	168	3.3	158	4.3	150	5.4	142	6.4	134	7.4	115	10.4											12	117	6.2
76	1400	526	4.0	511	6.4	500	9.0	490	11.5	481	13.9	473	16.4	466	18.8	447	26.3	441	28.7	436	31.2	421	33.7	415	36.1	421	38.6	16	413	20.4
	2050	788	6.9	772	10.5	761	14.2	751	17.8	742	21.4	734	25.0	727	28.6	708	39.5	703	43.1	697	46.7	684	50.4	679	54.0	682	57.6	16	674	30.6
	575	362	2.2	336	4.0	316	5.9	299	7.7	284	9.6	271	11.4	258	13.3	226	18.8											12	228	11.2
711	1400	970	6.5	944	11.0	925	15.5	908	20.0	893	24.5	880	29.0	867	33.5	835	47.1											15	793	34.4
	2050	1450	10.9	1424	17.5	1404	24.1	1387	30.7	1373	37.3	1359	43.9	1347	50.5	1315	70.3											16	1256	54.6
	575	600	3.3	563	6.3	534	9.3	510	12.3	489	15.4	470	18.4															10	446	15.0
718	1400	1590	9.7	1553	17.0	1524	24.3	1500	31.6	1479	39.0	1460	46.3															12	1398	44.66
	2050	2370	15.7	2333	26.9	2304	37.2	2280	47.9	2259	58.6	2240	69.4															12	2178	6.4

Notes: 1. Pressure ratings based on inlet air at standard pressure of 14.7 psia, standard temperature of 68°F, and specific gravity of 1.0. 2. Vacuum ratings based on inlet air at standard temperature of 68°F, discharge of 30° Hg and Specific gravity of 1.0.

5

U-RAI-J Performance Tables

Frame	Speed	4" Vac	Hg uum	6" Vac	Hg uum	8" Vac	Hg uum	10'' Vac	' Hg uum	12' Vac	' Hg uum	14' Vac	' Hg uum	15' Vac	' Hg uum	16" Vac	Hg uum	MAX.	PRES	SURE
Size	RPM	CFM	BHP	CFM	BHP	CFM	BHP	CFM	BHP	CFM	BHP	CFM	BHP	CFM	BHP	CFM	BHP	PSI	CFM	BHP
	1160	47	0.8	40	1.1	33	1.4	27	1.7									7	28	2.4
33J	2800	148	2.0	141	2.7	134	3.4	128	4.1	121	4.9	113	5.6					12	116	9.5
	3600	197	2.7	190	3.6	184	4.6	177	5.3	170	6.3	163	7.2	159	7.6			12	165	12.4
	1160	83	1.2	74	1.7	65	2.2	55	2.7									7	57	3.8
36J	2800	251	3.2	241	4.4	232	5.7	223	6.6	213	7.9	202	9.1					7	224	9.5
	3600	332	4.4	323	6.0	313	7.6	304	8.7	294	10.3	284	11.9	278	12.7			7	306	12.5
	860	66	1.1	56	1.5	46	1.9											7	37	3.4
45J	1760	175	2.2	164	3.1	154	4.0	144	4.9	134	5.8							10	133	9.5
	3600	398	5.2	387	7.1	377	8.9	367	10.3	356	12.2	345	14.1	339	15.0	332	15.9	10	356	20.5
	860	89	1.3	76	1.9	63	2.5	51	3.0									7	53	4.4
47J	1760	233	2.9	220	4.1	207	5.3	194	6.3	181	7.5							7	196	9.0
	3600	526	6.9	513	9.3	500	11.8	488	13.6	474	16.1	460	18.5	452	19.8			7	490	19.5
	700	108	1.5	95	2.2	82	2.9	70	3.5									7	72	4.9
56J	1760	342	4.3	329	5.9	316	7.6	304	9.0	291	10.6	276	12.3					10	290	17.9
	2850	583	7.9	570	10.6	557	13.2	545	15.2	532	17.9	517	20.6	510	21.9	502	23.2	13	517	38.0

URAI- J Notes:

- Pressure ratings based on inlet air at standard pressure of 14.7 psia, standard temperature of 68° F, and specific gravity of 1.0.
 Vacuum ratings based on inlet air at
- Vacuum ratings based on inlet air at standard temperature of 68° F, discharge of 30" Hg and Specific gravity of 1.0.

URAI-G Notes:

2.

- Performance based on METHANE at standard pressure of 14.7 psia, standard temperature of 68° F, and specific gravity of 0.55.
 - For vacuum service consult Factory or nearest ROOTS sales office.

U-RAI-G Performance Tables

FRAME	Speed RPM	1 F	PSI	2 F	PSI	31	PSI	4 F	PSI	5 F	PSI	6 F	PSI	7 F	PSI	8 F	si	10	PSI	11	PSI	12	PSI	13	PSI	14	PSI	15	PSI	MAX	K. VACI	MUL
		CFM	BHP	CFM	BHP	CFM	BHP	CFM	BHP	CFM	BHP	CFM	BHP	CFM	BHP	CFM	BHP	CFM	BHP	CFM	BHP	CFM	BHP	CFM	BHP	CFM	BHP	CFM	BHP	HG	CFM	BHP
32	1200 1800 2500 3600	37 64 95 145	0.3 0.5 0.8 1.3	30 57 88 138	0.5 0.9 1.3 2.0	24 51 83 133	0.8 1.2 1.8 2.7	20 47 78 128	1.0 1.6 2.3 3.4	16 43 74 124	1.2 1.9 2.7 4.1	12 39 71 120	1.5 2.3 3.2 4.8	36 67 117	2.6 3.7 5.5	33 64 114	3.0 4.2 6.3	27 59 108	3.7 5.2 7.7	56 106	5.7 8.4	54 103	6.2 9.1	51 101	6.7 9.8	49 98	7.2 10.5	96	11.2	8 10 13 16	15 35 56 93	1.0 1.8 3.3 5.9
33	1200 1800 2500 3600	52 89 132 200	0.4 0.7 1.1 1.8	42 80 123 190	0.7 1.2 1.7 2.7	36 72 116 183	1.1 1.7 2.4 3.7	29.6 66.5 110 177	1.4 2.1 3.1 4.7	24 61 104 172	1.7 2.6 3.7 5.6	20 57 100 167	2.0 3.1 4.4 6.6	52 95 163	3.6 5.1 7.6	48 91 159	4.1 5.8 8.5	40 84 152	5.0 7.1 10.5	80.4 148	7.8 11.4	77 145	8.4 12.4							8 10 13 15	23 51 80 137	1.3 2.5 4.5 7.7
36	1200 1800 2500 3600	91 152 224 336	0.7 1.1 1.7 2.9	78 139 211 323	1.2 1.9 2.9 4.5	68 129 201 313	1.7 2.7 4.0 6.1	60 121 192 304	2.3 3.5 5.1 7.7	52 113 185 297	2.8 4.3 6.2 9.3	46 107 178 290	3.3 5.1 7.3 10.9	39 101 172 284	3.9 5.9 8.4 12.5															8 10 13 15	50 99 150 248	2.2 4.1 7.5 12.7
42	1200 1800 2500 3600	54 90 132 199	0.4 0.7 1.0 1.7	46 82 124 191	0.7 1.1 1.7 2.7	40 76 118 185	1.0 1.6 2.4 3.6	35 71 113 180	1.4 2.1 3.0 4.6	30 66 109 175	1.7 2.6 3.7 5.5	26 62 105 171	2.0 3.0 4.3 6.5	22 59 101 168	2.3 3.5 5.0 7.4	19 55 98 164	2.6 4.0 5.7 8.4	49 91 158	4.9 7.0 10.3	46 88 155	5.4 7.6 11.2	43 85 152	5.9 8.3 12.2	83 149	9.0 13.1	80 147	9.6 14.1	77 144	10.3 15.0	8 10 13 16	58 88 140	1.3 2.5 4.5 8.0
45	1200 1800 2500 3600	111 184 268 402	0.8 1.3 2.0 3.4	97 170 254 387	1.4 2.3 3.4 5.3	86 159 243 377	2.1 3.2 4.7 7.2	77 150 234 367	2.7 4.2 6.0 9.1	69 142 226 359	3.3 5.1 7.3 11.0	61 134 219 352	4.0 6.1 8.6 12.9	55 128 212 345	4.6 7.0 10.0 14.8	49 121 206 339	5.2 8.0 11.3 16.7	110 195 328	9.9 13.9 20.5											8 10 13 16	67 126 189 297	2.6 4.9 8.9 15.9
47	1200 1800 2500 3600	148 244 356 531	1.1 1.8 2.7 4.5	131 226 338 513	1.9 3.0 4.4 7.0	117 213 324 500	2.7 4.3 6.2 9.5	105 201 313 488	3.6 5.5 7.9 12.0	95 191 303 478	4.4 6.8 9.7 14.5	86 182 293 469	5.2 8.0 11.4 17.0	78 173 285 460	6.1 9.3 13.1 19.5															8 10 13 15	92 171 255 410	3.5 6.5 11.7 19.8
53	800 1400 1800 2850	77 157 209 348	0.6 1.2 1.7 3.3	66 145 198 336	1.1 2.0 2.7 5.0	57 136 189 327	1.5 2.8 3.8 6.6	49 129 181 320	2.0 3.6 4.8 8.3	43 122 175 313	2.4 4.4 5.8 9.9	37 116 169 307	2.9 5.2 6.9 11.5	32 111 163 302	3.4 6.0 7.9 13.2	106 158 297	6.8 9.0 14.8	96 149 287	8.5 11 18.1	92 145 283	9.3 12.1 19.7	88 141 279	10.1 13.1 21.4	137 275	14.1 23	133 271	15.2 24.6	268	26.3	8 10 13 16	41 109 144 262	1.9 4.2 7.1 14.0
56	800 1400 1800 2850	134 267 355 588	1.0 2.0 2.7 5.2	117 250 338 570	1.7 3.3 4.5 8.0	104 236 325 557	2.5 4.7 6.2 10.7	92 225 313 545	3.3 6.0 7.9 13.5	82 215 303 535	4.1 7.3 9.7 16.2	73 206 294 526	4.8 8.7 11.4 19.0	64 197 286 518	5.6 10.0 13.1 21.7	57 190 278 510	6.4 11.4 14.9 24.5	176 264 496	14.1 18.3 30.0	169 257 490	15.4 20.1 32.7	163 251 483	16.8 21.8 35.5	157 245 477	18.1 23.5 38.2					8 10 13 15	79 195 257 457	3.2 7.0 11.7 23.2
59	800 1400 1800 2850	205 399 528 867	1.4 2.9 4.1 7.8	183 377 506 845	2.6 4.9 6.6 11.8	166 360 489 828	3.7 6.8 9.1 15.8	152 346 475 814	4.8 8.8 11.7 19.9	137 333 462 802	5.9 10.8 14.2 23.9	128 322 451 790	7.1 12.7 16.7 27.9	118 312 441 780	8.2 14.7 19.3 31.9															8 10 13 15	136 309 404 718	4.7 10.3 17.2 32.1
65	700 1400 1800 2350	128 301 399 534	1.0 2.5 3.5 5.2	110 282 381 516	1.7 4.0 5.4 7.7	96 269 367 502	2.5 5.5 7.4 10.3	85 257 355 491	3.2 7.0 9.3 12.8	74 246 345 480	4.0 8.5 11.2 15.3	65 237 336 471	4.7 10.0 13.2 17.8	56 229 327 462	5.5 11.5 15.1 20.3	48 221 319 454	6.2 13.0 17.0 22.9	206 304 440	16.0 20.9 27.9	199 298 433	17.5 22.8 30.4	193 291 426	19.0 24.8 32.9	187 285 420	20.5 26.7 35.5	181 279 414	22.0 28.6 38.0	175 273 409	23.5 30.5 40.5	8 10 13 16	71 226 297 400	3.2 8.0 13.4 21.6
68	700 1400 1800 2350	206 483 641 858	1.5 3.6 5.0 7.3	177 454 612 829	2.7 6.0 8.1 11.4	155 431 589 806	3.9 8.4 11.2 15.4	136 412 570 788	5.1 10.8 14.3 19.5	119 396 554 771	6.3 13.2 17.4 23.5	104 381 539 756	7.5 15.6 20.5 27.9	91 367 525 742	8.7 18.0 23.6 31.6	78 354 512 729	9.9 20.5 26.7 35.7	331 489 706	25.3 32.9 43.8	320 478 695	27.7 36.0 47.8	309 467 685	30.1 39.1 51.9	300 458 675	32.5 42.2 55.9	290 448 665	34.9 45.3 60.0			8 10 13 16	115 363 477 642	5.0 12.6 21.1 34.0
615	700 1400 1800 2350	386 904 1200 1607	2.6 6.0 8.3 11.9	332 850 1146 1553	4.9 10.6 14.1 19.5	290 808 1104 1511	7.2 15.1 19.9 27.0	255 773 1069 1476	9.4 19.6 25.8 34.6	223 741 1037 1444	11.7 24.1 31.6 42.2	713 1009 1416	28.6 37.4 49.8	688 984 1391	33.1 43.2 57.4															8 10 12 13	215 681 922 1300	9.2 23.2 35.8 51.2

ROOTS XLP WHISPAIR

Extra Low Pulse TRI-Lobe Blowers Basic Blower Description

ROOTS[™] XLP WHISPAIR[™] blowers are specially designed to reduce noise and power loss by combining the exclusive ROOTS[™] WHISPAIR[™] wraparound plenum and exclusive double jet to control pressure equalization with a tri-lobe impeller design. The Tri-lobe impeller profile ensures maximum volumetric efficiency and minimum absorbed power without sacrificing torsional rigidity.

Designed for long operating life, the XLP tri-lobe blower features large-diameter rolling element bearings with high load carrying capacity. XLP blowers are splash lubricated on both ends incorporating an oil slinger design that eliminates the need for lip seals.

Taper mounted, precision ground and hardened highgrade alloy steel gears ensure smooth, quiet operation. Cylinder and headplates are made from cast iron with dynamically balanced ductile iron impellers and integral shafts.

All units are designed with rugged steel mounting feet that permit in-field adaptability to either vertical or horizontal installation requirements.

XLP series Performance Table

Frame	Speed	2 F	PSI	6	PSI	10	PSI	12	PSI	15	PSI	MAX	X. VACI	JUM
Size		CFM	BHP	CFM	BHP	CFM	BHP	CFM	BHP	CFM	BHP	*Hg	CFM	BHP
110	1750 2950 3650	576 1032 1298	6.2 11.9 16.1	511 967 1233	17.8 31.4 40.3	467 923 1189	29.4 51.0 64.5	448 904 1170	35.2 60.8 76.6	878 1144	75.4 94.7	8.0 12.0 15.0	520 925 1146	11.7 30.1 46.5
108	1750 2950 3650	769 1377 1732	8.3 15.7 21.1	682 1291 1646	23.8 41.8 53.4	623 1231 1586	39.2 67.9 85.7	597 1206 1561	47.0 80.9 101.8			8.0 12.0 15.0	694 1234 1529	15.6 40.0 61.9
210	1750 2300 2850	1243 1681 2119	13.9 19.9 27.3	1131 1570 2008	38.2 51.9 66.9	1055 1493 1931	62.5 83.9 106.5	1022 1460 1899	74.7 99.8 126.3	978 1416 1855	93.0 123.8 156.1	8.0 12.0 15.0	1146 1496 1859	25.2 49.5 76.7
208	1750 2300 2850	1656 2240 2824	18.4 26.2 35.7	1507 2091 2676	50.8 68.8 88.5	1405 1989 2573	83.2 111.4 141.3	1362 1946 2530	99.4 132.7 167.7			8.0 12.0 15.0	1527 1993 2476	33.4 65.7 101.9

Notes: 1. Pressure ratings based on inlet air at standard pressure of 14.7 psia, standard temperature of 68 °F, and specific gravity of 1.0.

2. Vacuum ratings based on inlet air at standard temperature of 68° F, discharge of 30" Hg and Specific gravity of 1.0.

RAM[™] series

rotary positive blowers/exhausters

Basic Equipment Description

ROOTS RAMTM series units are recognized as the most volumetrically efficient equipment in the industry.

Unless otherwise noted, RAM series equipment may operate under either vacuum or pressure application with no equipment modification, and can provide simultaneous vacuum and pressure for a system with a single unit.

RAM series units feature integral-shaft ductile iron impellers with involute profiles.

Headplates and the rigid casing are cast grey iron, while the drive end and gear covers are aluminum. Carburized ground alloy steel spur timing gears are securely mounted on taper end shafts. All units in the RAM series feature cylindrical roller bearings for maximum life.

Detachable steel mounting feet to permit in-field adaptability to either vertical or horizontal installation requirements.

Piston ring shaft seals reduce gas leakage through the headplates, while lip-type oil seals prevent lubricant from entering the air chamber. RAM units are splash lubricated on both sides with high volume oil reservoirs.

Standard RAM rotary air units

Frames 404 thru 624

All standard units are center-timed to allow rotation in either direction.

RAM WHISPAIR rotary air units

Frames 404J thru 624J

RAM-J units feature the exclusive WHISPAIR jets to control pressure equalization by feeding backflow in the direction of impeller movement, thereby aiding rotation.

RAM WHISPAIR water sealed exhausters

Frames 404J thru 624J

RAM WHISPAIR units are available equipped with an inlet spray nozzle and seal water flow meter for water injection. This feature cools

the vacuum unit to enable the unit to reach deeper vacuum while minimizing potential impeller and casing distortion.

RAM gas units

Available on all RAM Frame sizes

RAM standard gas blowers feature a piston ring system between the compression chamber and vent cavities. All vent cavities are plugged for purge or drain. Special long-life mechanical seals and viton O-rings are installed at each bearing to control gas and oil leakage. The seal incorporates a unique geometry that promotes enhanced cooling and extended seal life.

RAM gas units are suitable for both vacuum or pressure service. Alternate material units and optional O-ring material are available for gas units, please contact the factory for more information.

RAM Performance Tables

Frame	Speed	4	PSI	6 1	PSI	8	PSI	10	PSI	12	PSI	15	PSI	18	PSI	MA	X. VACI	JUM
Size	КРМ	CFM	BHP	CFM	BHP	CFM	BHP	CFM	BHP	CFM	BHP	CFM	BHP	CFM	BHP	*Hg	CFM	BHP
404	1750 2950 4000	149 281 396	3.6 7.0 8.3	139 271 386	5.3 9.8 14.2	130 262 378	7.0 12.6 17.9	123 255 370	8.7 15.4 21.6	116 248 364	10.4 18.2 25.3	239 355	22.4 30.9	347	37.0	14.0 15.0 16.0	115 240 353	5.9 11.2 15.9
406	1750 2950 4000	225 426 601	5.4 10.5 15.0	210 411 586	8.0 14.7 20.1	198 398 574	10.5 18.9 26.0	187 387 562	13.0 23.1 31.9	177 377 552	15.6 27.3 37.0	363 539	33.6 46.5	526	54.0	14.0 15.0 16.0	173 365 531	9.0 16.9 23.6
409	1750 2950 4000	338 638 900	8.5 15.2 24.0	315 615 878	12.0 21.5 30.0	296 596 859	15.8 27.8 38.1	279 579 842	20.0 34.1 46.8	264 564 827	23.5 10.4 55.0	544 806	49.8 67.9	788	79.0	14.0 15.0 16.0	259 546 795	13.5 24.4 35.1
412	1750 2950 4000	450 849 1199	11.0 19.9 28.8	420 819 1169	16.0 28.3 39.9	394 794 1144	21.0 36.6 51.0	372 772 1121	26.0 45.0 62.2	352 752 1101	32.0 53.4 73.3	724 1074	66.0 90.0			14.0 15.0 16.0	343 728 1059	17.7 32.3 46.5
418	1750 2950 4000	675 1275 1800	16.5 29.5 42.9	630 1230 1755	24.0 42.1 59.7	592 1192 1717	31.7 54.7 73.4	559 1159 1684	39.0 67.3 93.1							14.0 15.0 16.0	515 1092 1590	26.5 48.4 69.7
616	1170 1750 3000	718 1176 2162	16.9 26.2 48.9	672 1130 2116	24.9 38.2 68.7	633 1091 2077	32.9 50.1 88.5	599 1056 2043	40.9 62.0 108.3	568 1025 2012	49.0 73.9 128.0	1970	157.7			13.0 14.0 16.0	579 1013 1946	25.9 42.0 81.7
624	1170 1750 3000	1077 1764 3244	25.4 39.9 77.6	1008 1695 3175	37.5 57.8 107.3	950 1637 3117	49.5 75.7 137.0	899 1585 3065	61.5 93.6 166.7							13.0 14.0 16.0	869 1519 2920	39.0 63.4 124.6

RAM-J and RAM-GJ Performance Tables

Frame	Speed	4 1	PSI	6 F	PSI	8	PSI	10	PSI	12	PSI	15	PSI	18	PSI	MA	X. VAC	UUM
3120		CFM	BHP	CFM	BHP	CFM	BHP	CFM	BHP	CFM	BHP	CFM	BHP	CFM	BHP	*Hg	CFM	BHP
404J	1750 2950 4000	149 281 396	3.6 7.0 8.3	139 271 386	5.3 9.8 14.2	130 262 378	7.0 12.6 17.9	123 255 370	8.7 15.4 21.6	116 248 364	10.4 18.2 25.3	239 355	22.4 30.9	347	37.0	14.0 15.0 16.0	115 240 353	5.9 11.2 15.9
406J	1750 2950 4000	225 426 601	5.4 10.5 15.0	210 411 586	8.0 14.7 20.1	198 398 574	10.5 18.9 26.0	187 387 562	13.0 23.1 31.9	177 377 552	15.6 27.3 37.0	363 539	33.6 46.5	526	54.0	14.0 15.0 16.0	173 365 531	9.0 16.9 23.6
409J	1750 2950 4000	338 638 900	8.5 15.2 24.0	315 615 878	12.0 21.5 30.0	296 596 859	15.8 27.8 38.1	279 579 842	20.0 34.1 46.8	264 564 827	23.5 40.4 55.0	544 806	49.8 67.9	788	79.0	14.0 15.0 16.0	259 546 795	13.5 24.8 35.1
412J	1750 2950 4000	450 849 1199	11.0 19.9 28.8	420 819 1169	16.0 28.3 39.9	394 794 1144	21.0 36.6 51.0	372 772 1121	26.0 45.0 62.2	352 752 1101	32.0 53.4 73.3	724 1074	66.0 90.0			14.0 15.0 16.0	343 728 1059	17.7 32.7 46.5
418J	1750 2950 4000	675 1275 1800	16.5 29.5 42.9	630 1230 1755	24.0 42.1 59.7	592 1192 1717	31.7 54.7 73.4	559 1159 1684	39.0 67.3 93.1							14.0 15.0 16.0	515 1092 1590	26.8 48.9 69.7
616J	1170 1750 3000	718 1176 2162	16.9 26.2 48.9	672 1130 2116	24.9 38.2 68.7	633 1091 2077	32.9 50.1 88.5	599 1056 2043	40.9 62.0 108.3	568 1025 2012	49.0 73.9 128.0	1970				13.0 14.0 16.0	579 1013 1946	25.9 42.0 81.7
624J	1170 1750 3000	1077 1764 3244	25.4 39.9 77.6	1008 1695 3175	37.5 57.8 107.3	950 1637 3117	49.5 75.7 137.0	899 1585 3065	61.5 93.6 166.7							13.0 14.0 16.0	869 1519 2920	39.0 63.4 124.6

RAM-J Water Sealed Performance Tables

Frame	Speed	10"	HgV	15"	HgV	16"	HgV	20"	HgV	22"	HgV	24"	HgV
Size	RPM	CFM	BHP	CFM	BHP	CFM	BHP	CFM	BHP	CFM	BHP	CFM	BHP
406J	1530 2325 3200	181 301 436	6.4 10.9 17.1	160 276 408	9.0 14.8 22.5	154 269 400	9.6 15.6 23.5	118 228 353	11.7 18.8 27.8	87 191 311	12.7 20.4 29.9	33 127 240	13.8 21.9 32.0
409J	1530 2325 3200	284 458 653	9.2 14.8 22.4	257 423 611	13.2 20.9 31.1	249 413 600	13.9 22.1 32.7	201 353 528	17.1 26.8 39.0	160 300 466	18.6 29.5 42.4	88 311 359	20.3 31.6 45.4
412J	1530 2325 3200	379 610 870	11.9 19.3 29.0	342 563 815	17.2 27.2 39.6	331 550 800	18.2 28.8 41.7	268 470 705	22.4 35.1 50.2	213 400 620	24.5 38.3 54.4	118 280 475	26.6 41.4 58.7
418J	1530 2325 3200	570 815 1305	17.4 27.7 40.9	513 845 1230	25.3 39.4 56.8	500 825 1200	26.9 41.9 59.9						
616J	1160 1750 2400	796 1245 1703	20.7 32.7 48.3	746 1175 1634	30.2 46.7 67.1	734 1160 1623	32.0 49.6 70.9	661 1075 1523	39.6 60.9 85.9	596 975 1434	43.4 66.4 93.5	504 855 1238	47.1 72.1 101
624J	1160 1750 2400	1192 1840 2552	30.1 46.7 67.1	1117 1755 2448	44.2 67.7 95.2	1100 1725 2431	47.1 71.9 100.9						

Notes:

- Pressure ratings based on inlet air at standard pressure of 14.7 psia, standard temperature of 68° F, and specific gravity of 1.0.
- 2. Vacuum ratings based on inlet air at standard temperature of 68° F, discharge of 30" Hg and Specific gravity of 1.0.

RCS series

rotary positive blowers/exhausters

RCS series description

RCS rotary positive blowers are heavy-duty units designed with integral-shaft ductile iron impellers with involute profile. The headplates, gear cover, drive end cover and rigid, one-piece casing are grey iron. Carburized and ground alloy steel spur timing gears are taper mounted on the shafts, secured with a locknut. Cylindrical roller bearings are used.

Piston rings reduce air leakage through the headplate shaft openings, while lip-type oil seals prevent lubricant from entering the air chamber. All RCS series blowers are equipped with splash oil lubrication at both ends of the blower.

Unless otherwise noted, RCS series units incorporate detachable rugged steel mounting feet to permit in-field adaptability to either vertical or horizontal installation.

RCS blowers are available in frames 817 thru 827, and with ROOTS WHISPAIR frames available in 715J thru 832J.

RCS WHISPAIR rotary positive blowers

Frames 715J thru 832J

RCS WHISPAIR units reduce noise and power loss by utilizing an exclusive wrap-around plenum and proprietary WHISPAIR jet portals to control pressure equalization. The WHISPAIR jets meter discharge pressure in the direction of impeller movement, thereby aiding rotation. Discharge pulsation is reduced by the pre-pressurization of the blower chamber. Reduce pulsation results in lower noise, and reduced shock loading on the impellers.

RCS WHISPAIR units frames 817J thru 832J have feet integral to the headplates.

RCS series Performance Table

Frame	Speed	4	PSI	61	PSI	8	PSI	10	PSI	12	PSI	15	5PSI	MA	X. VAC	UUM
Size	RPM	CFM	BHP	CFM	BHP	CFM	BHP	CFM	BHP	CFM	BHP	CFM	BHP	*Hg	CFM	BHP
817	880 1770 2250	982 2368 3116	24.9 55.5 78.7	895 2281 3028	36.8 79.5 109.2	821 2207 2955	48.7 103.5 139.8	756 2142 2890	60.6 127.6 170.4	2083 2831	151.6 200.9	2003 2751	187.7 246.8	12.0 16.0 16.0	761 1959 2707	35.7 101.4 137.1
824	880 1770 2250	1326 3198 4208	33.1 74.8 105.6	1207 3080 4090	49.2 107.2 147.2	1108 2980 3990	65.4 139.7 188.5	1020 2892 3902	81.5 172.2 229.8	2813 3823	204.7 271.1	2705 3715	253.4 333.0	12.0 16.0 16.0	1028 2646 3656	48.2 136.8 184.9
827	880 1770 2250	1519 3665 4822	37.9 85.5 120.9	1383 3529 4687	56.4 122.7 168.2	1269 3415 4572	74.9 159.9 215.5	1169 3314 4472	93.4 197.1 262.8	3223 4381	234.3 310.1			12.0 16.0 16.0	1178 3032 4189	55.2 157.0 212.3

RCS-J series Performance Table

Frame	Speed	4 F	PSI	6 F	PSI	8 F	PSI	10	PSI	12	PSI	15	PSI	18	PSI	MAX	(. VACI	JUM
Size	KPM	CFM	BHP	CFM	BHP	CFM	BHP	CFM	BHP	CFM	BHP	CFM	BHP	CFM	BHP	*Hg	CFM	BHP
715J	1180 1770 2600	935 1548 2410	23.0 37.3 63.4	870 1483 2345	33.4 53.0 86.0	815 1428 2290	44.0 68.8 108.5	766 1379 2241	54.6 84.5 131.0	722 1335 2198	65.0 100.3 153.7	663 1276 2138	81.0 12.9 187.5			14.0 15.0 15.0	705 1281 2144	37.2 61.4 95.4
721J	1180 1770 2600	1266 2096 3264	30.5 49.1 81.4	1178 2008 3176	44.8 70.4 112.0	1103 1933 3101	59.0 91.7 142.5	1037 1867 3035	73.5 113.1 173.1	978 1808 2976	87.8 134.4 203.7	892 1727 2895	109.2 166.4 249.5			14.0 15.0 15.0	955 1735 2903	50.0 81.7 124.8
817J	880 1770 2250	982 2368 3116	24.9 55.0 75.6	895 2280 3028	36.8 78.5 105.0	821 2206 2955	48.7 102.0 134.0	756 2142 2890	60.6 125.4 164.0	2083 2830	148.9 193.0	2004 2751	184.1 237.0	2055 2680	219.4 281.0	16.0 16.0	1962 2707	95.9 126.0
821J	880 1770 2250	1179 2842 3740	29.6 65.7 92.3	1074 2738 3635	43.9 93.9 127.0	985 2648 3546	58.1 122.1 163.0	907 2571 3468	72.4 150.3 198.0	2500 3398	178.4 233.0	2405 3302	220.7 286.0			16.0 16.0	2354 3249	114.8 153.0
826J	880 1770 2250	1473 3554 4676	37.1 81.4 105.0	1342 3423 4545	55.0 116.7 156.0	1231 3311 4434	72.8 151.9 200.0	1134 3214 4336	90.7 187.1 247.0	3126 4248	222.3 288.0					16.0 16.0	2944 4062	142.8 188.0
832J	880 1770 2250	1768 4264 5610	44.4 97.5 134.0	1610 4107 5452	65.8 139.8 186.0	1477 3972 5320	87.2 182.0 239.0	1360 3857 5202	108.6 224.3 292.0							16.0 16.0	3531 4874	168.4 225.0

Notes:

1. Pressure ratings based on inlet air at standard pressure of 14.7 psia, standard temperature of 68° F, and specific gravity of 1.0.

2. Vacuum ratings based on inlet air at standard temperature of 68⁶ F, discharge of 30" Hg and Specific gravity of 1.0.

3. 800J frame sizes only - Operation above 15 psi pressure rise, 15" Hg vacuum or 230° F temperature rise requires oil coolers - refer to factory. Oil coolers not available on 600J and 700J frame sizes.

WHISPAIR DRY EXHAUSTERS

Basic Dry Exhausters Description

ROOTSTM dry exhausters feature an exclusive discharge jet plenum designed to allow cool, atmospheric air to flow into the casing. This unique design permits continuous operation at levels to blank-off with a single stage unit, without water injection or heat exchangers.

Competitor's dry exhausters, not having the benefit of the WHISPAIR[™] jet plenum are limited to approximately 16" Hg due to extreme discharge temperatures resulting in casing and impeller distortion.

Headplates and the rigid casing are cast from grey iron, with aluminum drive end and gear covers. Carburized ground alloy steel spur timing gears are securely mounted on taper end shafts.

All DVJ exhausters are designed with detachable steel mounting feet to permit in-field adaptability to discharge left, right or vertically upwards.

WHISPAIR dry exhausters

Frame 2504 DVJ

Frame 2504 DVJ units feature ball bearings, with splash lubrication at the gear end and grease lubrication at the drive end. Lip-type seals restrict oil leakage into the air stream.

Frame 721 DVJ

Frame 721 DVJ units feature cylindrical roller bearings with splash lubrication at both the gear end and the drive end. Lip-type seals restrict oil leakage into the air stream.

RAM WHISPAIR dry exhausters

Frame 406 DVJ, 412 DVJ, and 616 DVJ

RAM DVJ units feature integral-shaft ductile iron impellers with involute profiles. Headplates and the rigid casing are cast grey iron, while gearbox and end covers are aluminum. Carburized ground alloy steel spur timing gears are securely mounted on taper end shafts. The top shaft is extended for drive side outlet blowers, and either shaft can be extended for drive on top or bottom outlet blowers. RAM DVJ units feature cylindrical roller bearings for maximum life.

Piston ring shaft seals reduce gas leakage through the headplates, while lip-type oil seals prevent lubricant from entering the air chamber. RAM DVJ units are splash lubricated on both sides with high volume oil reservoirs.

RAM DVJ units can be equipped with mechanical seals for gas applications. Please contact the factory for more information.

RAM WHISPAIR DRY HIGH PRESSURE BLOWERS

Frame 406 DPJ

ROOTSTM dry high-pressure blowers feature an exclusive discharge jet plenum designed to allow externally cooled gas to flow into the casing. Additionally, the ROOTS WHISPAIR jets control pressure equalization by feeding backflow in the direction of impeller movement, thereby aiding rotation.

The unique WHISPAIR design permits continuous operation with discharge pressures up to 30 PSIG in a single stage unit. ROOTS highpressure units produce temperatures up to 370°F, and are therefore ideal for designing systems with plant heat co-generation capabilities.

Headplates and the rigid casing are forged from grey iron, with aluminum drive end and gear covers. Carburized ground alloy steel spur timing gears are securely mounted on taper end shafts. RAM DPJ units

feature integral-shaft ductile iron impellers with involute profiles. RAM DPJ units feature cylindrical roller bearings and is splash lubricated at both the gear and drive ends. Piston rings are used to reduce air leakage through the headplate shaft openings, while lip-type oil seals prevent lubricant from entering the air chamber.

All DPJ high-pressure blowers are designed with detachable steel mounting feet to permit in-field adaptability to either left, right or vertically upwards.

The top shaft is extended for drive side outlet blowers, and either shaft can be extended for drive on top outlet blowers.

RAM DPJ units are suitable for air or gas applications.

Performance Table **Dry Vacuum Exhausters & Dry High Pressure Blowers**

Frame Size	Speed RPM	MAXIMUM FREE AIR	12"	HgV	16"	HgV	20"	HgV	24"	HgV	27"	HgV
0.110		CFM	CFM	BHP	CFM	BHP	CFM	BHP	CFM	BHP	CFM	BHP
406J	2320 2695 3564 4000	668	266 329 474 547	10.3 12.2 16.9 19.5	229 292 437 510	13.5 15.8 21.4 24.4	178 241 386 459	16.7 19.5 26.2 29.6	80 143 288 361	20.0 23.2 30.9 34.8	* 47 120	23.0 27.0 34.5 38.8
412J	2320 2695 3564 4000	1332	531 656 945 1091	20.2 23.7 32.2 36.3	457 581 871 1016	26.6 31.1 41.7 47.1	355 480 769 914	33.1 38.6 51.4 58.0	160 285 574 719	39.6 46.1 61.2 68.9	* 94 239	45.0 52.0 68.5 77.0
616J	1750 2124 2437 2860 3000	2367	1015 1311 1558 1890 2002	36.0 44.0 51.0 60.0 63.0	903 1198 1445 1777 1889	48.0 58.0 67.0 79.0 85.0	750 1045 1292 1623 1736	59.0 72.0 83.0 98.0 103.0	445 750 997 1324 1441	71.0 86.0 99.0 117.0 123.0	* 271 578 715	80.0 97.0 111.0 131.0 136.7
Erom		15 PS			25	PSI	30	PSI	Notes	: Vacuur	n rating	s based

DPJ

Frame

Size

406 DPJ

Speed

RPM

4000

3070

2320

1750

CFM

545

390

265

170

BHP

46

35

26

20

CFM

525

370

245

150

BHP

60

46

35

26

CFM

510

355

230

134

BHP

75

57

43

32

CFM

495

340

215

118

BHP

88

68

52

39

DVJ

sed on inlet and iet air at standard pressure standard temperature of 68° F, discharge and jet pressure of 30" Hg and specific gravity of 1.0.

Refer to Factory for performance guarantee above 24" HgV.

DPJ ratings based on inlet air at standard pressure of 14.7 psia, standard temperature of 68° F, and specific gravity of 1.0.

Copyright 2002 Dresser, Inc. All rights reserved.

ROOTS. RAM. and XLP WHISPAIR are Trademarks of Dresser. Inc. Universal RAI, U-RAI and are registered Trademarks of Dresser, Inc.

2

3.

13

LEFT: Vertical configuration BELOW: Horizontal configuration

Configurations

ROOTS Blowers & Compressors are available in two basic configurations to meet nearly any piping arrangement or installation requirement. Determine orientation for inlet and discharge connections from the drive end:

Vertical Configuration:

For vertical configurations, one impeller is mounted above the other, unless otherwise noted the blower drive end located opposite the timing gears. Inlet and discharge connection flanges are positioned to provide horizontal air/gas flow. Specify blower driver for either top or bottom connection.

Horizontal Configuration:

For horizontal configurations, impellers are located side by side, unless otherwise noted the blower drive end is located opposite the timing gears. Inlet and discharge connection flanges provide a vertical air/gas flow. Specify blower driver for either left or right hand blower shaft.

Special Note: URAI-J[™] models are designed to operate with only one shaft rotation direction to take full advantage of the Whispair feature. Therefore, a URAI-J[™] blower should be operated in the following combinations only.

- · CCW Rotation: Bottom Shaft; Right side discharge or a Left Shaft; Bottom discharge.
- CCW Rotation: Top Shaft; Left side discharge or a Right Shaft; Top discharge.
- · CW Rotation: Bottom Shaft, Left side discharge or a Right Shaft; Bottom discharge.
- · CW Rotation: Top Shaft, Right side discharge or a Left Shaft; Top discharge.

Dimensional Drawings & Tables

RCS Dimensional Table

Frame	Α	Α'	в	с	Drive Loca	Shaft ation	0	0'	Р	P'	R	U	Kevwav	AF Inlet	АХ	Approx. Net Wt.
Size					D	D1				-			,,	Diameter		(lbs)
817	19.00	27.00	24.25	38.44	18.00	10.00	28.38	20.38	19.00	25.25	14.00	2.750	.625 x .313	10.0 FLG	4.00	1200
824	19.00	27.00	30.50	44.69	18.00	10.00	28.38	20.38	19.00	25.25	14.00	2.750	.625 x .313	12.0 FLG	4.00	1330
827	19.00	27.00	34.00	48.19	18.00	10.00	28.38	20.38	19.00	25.25	14.00	2.750	.625 x .313	14.0 FLG	4.00	1600

14 Copyright 2002 Dresser, Inc. All rights reserved. ROOTS, RAM and XLP WHISPAIR are Trademarks of Dresser, Inc. Universal RAI, U-RAI and are registered Trademarks of Dresser, Inc.

0

DRIVE

DISCHARGE

URAI Dimensional Table

Frame	Α	В	с	Dr L	ive Sh .ocatio	aft n	0	0'	Р	P'	R	U	Keyway	Inlet & disch.	AX	Approx. Net Wt.
Size				D	D1	D2								Dia.		(lbs.)
22	5.13	5.00	9.75	3.75	6.25	3.75	9.63	6.88	6.25	9.25	5.00	.625	.188 x .094	1.0 NPT	1.25	32
24	5.13	7.00	11.75	3.75	6.25	3.75	9.63	6.88	6.25	9.25	5.00	.625	.188 x .094	2.0 NPT	1.25	43
32	7.25	6.75	11.25	5.00	8.50	5.00	12.81	8.88	7.75	12.13	6.75	.750	.188 x .094	1.25 NPT	1.75	69
33	7.25	7.63	12.13	5.00	8.50	5.00	12.81	8.88	7.75	12.13	6.75	.750	.188 x .094	2.0 NPT	1.75	74
36	7.25	10.00	14.63	5.00	8.50	5.00	12.81	8.88	7.75	12.13	6.75	.750	.188 x .094	2.5 NPT	1.75	102
42	8.00	7.25	13.00	6.25	10.25	6.25	15.06	10.63	8.75	13.63	8.25	.875	.188 x .094	1.5 NPT	2.00	88
45	8.00	10.00	15.50	6.25	10.25	6.25	15.06	10.63	8.75	13.63	8.25	.875	.188 x .094	2.5 NPT	2.00	109
47	8.00	11.75	17.63	6.25	10.25	6.25	15.06	10.50	8.50	13.63	8.25	.875	.188 x .094	3.0 NPT	2.00	128
53	10.50	8.38	15.38	6.25	11.25	6.75	17.38	11.88	10.25	17.25	8.75	1.125	.250 x .125	2.5 NPT	2.50	143
56	10.50	11.00	18.00	6.25	11.25	6.75	17.38	12.25	11.00	17.25	8.75	1.125	.250 x .125	4.0 NPT	2.50	170
59	10.50	14.00	21.18	6.25	11.25	6.75	17.38	12.25	11.00	17.25	8.75	1.125	.250 x .125	4.0 NPT	2.50	204
65	11.00*	10.00	18.38	8.75	14.75	8.75	21.63	15 <u>.</u> 13	12.75	19.75	11.75	1.375	.312 x .156	3.0 NPT	3.00	245
68	11.00*	13.00	21.38	8.75	14.75	8.75	21.63	15.13	12.75	19.75	11.75	1.375	.312 x .156	5.0 NPT	3.00	285
615	11.00*	20.00	28.38	8.75	14.75	8.75	21.63	16.25	15.00	19.75	11.75	1.375	.312 x .156	6.0 FLG	3.00	425
76	14.00**	11.75	19.94	11.00	18.00	11.00	26.13	20.69	19.38	23.25	14.50	1.562	.375 x .188	4.0 NPT	3.50	400
711	14.00**	16.75	25.19	11.00	18.00	11.00	26.13	19.50	17.00	23.25	14.50	1.562	.375 x .188	6.0 FLG	3.50	530
718	14.00**	23.75	32.19	11.00	18.00	11.00	26.13	19.50	17.00	23.25	14.50	1.562	.375 x .188	8.0 FLG	3.50	650

RAM Dimensional Table

Frame Size	A	Α'	В	С	Drive Loca	Shaft ation	0	0'	Р	P'	R	U	Keyway	AF Inlet Diameter	АХ	Approx. Net Wt. (lbs)
					D	D1										(196)
404	8.00	11.00	8.75	18.50	11.25	7.50	16.63	13.50	12.00	15.25	9.00	1.500	.375 x .188	3.0 NPT	2.25	200
406	8.00	11.00	10.75	20.50	11.25	7.50	16.63	13.50	12.00	15.25	9.00	1.500	.375 x .188	4.0 NPT	2.25	230
409	8.00	11.00	13.75	23.50	11.25	7.50	16.63	13.00	11.00	15.25	9.00	1.500	.375 x .188	4.0 NPT	2.25	270
412	8.00	11.00	16.75	26.50	11.25	7.50	16.63	13.00	11.00	15.25	9.00	1.500	.375 x .188	6.0 FLG	2.25	330
418	8.00	11.00	22.75	32.50	11.25	7.50	16.63	13.00	11.00	15.25	9.00	1.500	.375 x .188	8.0 FLG	2.25	410
616	10.00	16.00	20.75	32.44	15.00	9.00	22.00	16.25	14.50	20.00	12.00	2.000	.500 x .250	8.0 FLG	3.00	650
624	10.00	16.00	28.75	40.44	15.00	9.00	22.00	16.25	14.50	20.00	12.00	2.000	.500 x .250	10.0 FLG	3.00	775

Dimensional Drawings & Tables cont.

URAI-J Dimensional Table

Frame Size	A	В	С	Dr L	ive Sh .ocatio	aft n	0	0'	Р	P'	R	U	Keyway	Inlet & disch.	АХ	Approx. Net Wt.
				D	D1	D2								Dia.		(ibs.)
33J	7.25	7.63	12.13	5.00	8.50	5.00	12.81	10.00	10.00	12.13	6.75	.750	.188 x .094	2.0 NPT	1.75	84
36J	7 <u>.</u> 25	10.00	14.63	5.00	8.50	5.00	12.81	10.50	11.00	12.13	6.75	.750	.188 x .094	2.5 NPT	1.75	112
45J	8.00	10.00	15.50	6.25	10.25	6.25	15.06	12.25	12.00	13.63	8.25	.875	.188 x .094	2.5 NPT	2.00	119
47J	8.00	11.75	17.63	6.25	10.25	6.25	15.06	12.25	12.00	13.63	8.25	.875	.188 x .094	3.0 NPT	2.00	138
56J	10.50	11.00	18.00	6.25	11.25	6.75	17.38	14.00	14.50	17.25	8.75	1.125	.250 x .125	4.0 NPT	2.50	180

RAM-J Dimensional Table

Frame Size	A	Α'	в	С	Drive Loca	Shaft ation	0	0'	Р	P'	R	U	Keyway	AF Inlet Diameter	AF' Diameter	AA	AX	Approx. Net Wt.
					D	D1												(105)
404J	8.00	11.00	8.75	18.50	11.25	7.50	16.63	14.75	14.50	15.25	9.00	1.500	.375 x .188	3.0 NPT	3.0 NPT	7.25	2.25	270
406J	8.00	11.00	10.75	20.50	11.25	7.50	16.63	14.75	14.50	15.25	9.00	1.500	.375 x .188	4.0 NPT	4.0 NPT	7.25	2.25	300
409J	8.00	11.00	13.75	23.50	11.25	7.50	16.63	14.75	14.50	15.25	9.00	1.500	.375 x .188	5.0 NPT	5.0 NPT	7.25	2.25	350
412J	8.00	11.00	16.75	26.50	11.25	7.50	16.63	13.50	13.00	15.25	9.00	1.500	.375 x .188	6.0 FLG	5.0 FLG	6.00	2.25	400
418J	8.00	11.00	22.75	32.50	11.25	7.50	16.63	14.50	14.00	15.25	9.00	1.500	.375 x .188	8.0 FLG	6.0 FLG	7.00	2.25	500
616J	9.00	15.00	20.75	32.19	15.00	9.00	22.00	16.50	16.25	20.00	12.00	2.000	.500 x .250	8.0 FLG	6.0 FLG	7.50	3.00	700
624J	9.00	15.00	28.75	40.19	15.00	9.00	22.00	17.75	17.50	20.00	12.00	2.000	.500 x .250	10.0 FLG	8.0 FLG	8.75	3.00	910

XLP Dimensional Table

Frame Size	A	A'	В	с	D	D'	0	0'	Ρ	R	U	KEYWAY	INLET & DISCH. DIA.	AA	AA '	АХ	APPROX. NET WT. (LBS.)
110	12.95	19.76	18.11	28.82	7.44	6.50	16.02	12.20	12.40	9.88	45.03 / 45.011	5.5 / 5.7	150	5.71	6.69	2.44	169
108	12.95	19.76	23.23	33.74	7.44	6.50	16.02	12.20	12.40	9.88	45.03 / 45.011	5.5 / 5.7	150	5.71	6.69	2.44	202
210	17.24	25.98	24.80	37.32	9.84	8.66	24.21	15.94	15.63	12.99	60.03 / 60.011	7.0 / 7 / 2	200	7.28	8.35	3.15	340
208	17.24	25.98	31.10	43.62	9.84	8.66	24.21	15.94	15.63	12.99	60.03 / 60.011	7.0 / 7/2	250	7.28	8.35	3.15	375

RCS-J Dimensional Table

Frame	Α	Α'	в	с	Drive Loca	Shaft ation	0	0'	Р	P'	R	U	Keyway	AF Inlet	AF'	AA	AX	Approx. Net Wt.
Size					D	D1								Diameter	Diameter			(Ibs)
715J	19.00	26.00	21.50	33.88	17.00	10.00	25.13	19.00	18.00	23.25	13.50	2.375	.625 x .313	10.0 FLG	8.0 FLG	9.00	3.50	1100
721J	19.00	26.00	27.00	39.38	17.00	10.00	25.13	19.00	18.00	23.25	13.50	2.357	.625 x .313	12.0 FLG	10.0 FLG	9.00	3.50	1200
817J	13.75	22.00	24.25	38.63	21.00	13.00	30.00	25.75	25.50	25.00	17.00	2.750	.625 x .313	10.0 FLG	10.0 FLG	12.75	4.00	1620
821J	13.75	22.00	27.88	42.25	21.00	13.00	30.00	25.75	25.50	25.00	17.00	2.750	.625 x .313	12.0 FLG	10.0 FLG	12.75	4.00	1800
826J	13.75	22.00	33.13	47.50	21.00	13.00	30.00	25.75	25.50	25.00	17.00	2.750	.625 x .313	12.0 FLG	12.0 FLG	12.75	4.00	2075
832J	13.75	22.00	38.50	52.88	21.00	13.00	30.00	25.75	25.50	25.00	17.00	2.750	.625 x .313	14.0 FLG	12.0 FLG	12.75	4.00	2325

Dimensional Drawings & Tables cont.

DVJ Dimensional Table

Frame Size	A	A ¹	в	с	D	D1	ο	O ¹	Ρ	P1	R	R1	U	KEYWAY	AA	AA1	AB	AF	AF ¹	AW	АХ	APPROX. NET WT. (LBS.)
406J	8.00	11.00	10.75	20.50	11.25	7.50	16.38	18.00	17.75	14.75	9.00	7.38	1.500	.375 x .188	7.25	10.50	6.75	4 NPT	5 NPT	4 NPT	2.25	365
412J	8.00	11.00	16.75	26.50	11.25	7.50	16.63	19.25	17.75	15.25	9.00	7.63	1.500	.375 x .188	6.00	11.75	6.50	6 FLG	6 FLG	5 FLG	2.25	575
616J	10.00	16.00	21.44	32.50	15.00	9.00	21.63	22.75	21.25	19.25	12.00	9.63	2.000	.500 x .250	7.50	13.75	6.75	8 FLG	10 FLG	8 FLG	3.00	975

DPJ Dimensional Table

Frame	Α	A1	В	с	Drive Loca	Shaft tion	0	0'	Р	P'	R	R'	U	KEYWAY	AA	AA'	AB	AF	AF'	AW	AX	WGT
Size					D	D1																(LD3.)
406 DPJ	8.00	11.00	10.75	20.50	11.25	7.50	16.38	18.00	17.75	14.75	9.00	7.38	1.500	.375 X .188	7.25	10.50	6.75	4 NPT	5 NPT	4 NPT	2.25	365

17

Typical Application Packages

Pressure Application

Gas Application

Exhauster Application

High Vacuum Application

Other ROOTS products

Authorized ROOTS Distributor

- Authorization requires every ROOTS Distributor's service department to have a minimum of 16 hours factory training with ROOTS.
- BI-annual factory refresher courses for new products and techniques keep each Authorized Distributor's service department proficient, reducing repair time and costs.
- ROOTS Authorized Distributors have special factory-designed tools to fulfill your service needs quickly and effectively.
- Authorization requires Distributors to maintain facilities for repairs testing. Authorized Distributor repair work is proved before it ships.
- You get complete ROOTS warranty service/replacement directly from your Factory Authorized Distributor.

Dresser ROOTS 2135 Hwy 6 South Houston, TX 77077 PH: 281-966-4700 FX: 281-966-4309 Toll Free: 1-877-363-ROOT(S) Dresser ROOTS - Connersville 900 West Mount Street Connersville, IN 47331 PH: 765-827-9200 FX: 765-827-9309 Dresser ROOTS, Holmes Operation PO Box B7 Off St. Andrews Rd Turnbridge, Huddersfield England HD1 6RB PH: +44-1484-422222 FX: +44-1484-422668

Dresser, Inc.

B-50X93 April 2002

20

website: www.rootsblower.com • email: dmd_roots@dresser.com